My notes
Release 0.2

Tomasz Zielinski

September 06, 2012

CONTENTS

1 Django 1.3, 1.4 tips&tricks

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

3.1
32
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52
53
5.4
5.5
5.6
5.7
5.8

6.1
6.2

SEUNZS.PY « ¢ v v e
(De facto) standard add-ons L e e e e e

Rarely-known (and/or undocumented) Django features
REST, HTTPand Django i e e e e e e e e e
Non-HTTP cachingand Django i ittt et
Avoid Apache 1) L e e e e e e e e

Django 1.4 gotchas

Browsers, HTMLS & JavaScript

The hashbang hell
HTMLS . . o e
Browsers’ bfcache e e e e e e e e e
jQuery Mobile e e e e e e e e e e
JavaScript o L e e e

Python 2.x rarities

Slicing, extended slicing, Ellipsis - a[i:j:step], ali:3j, k:11, al..., i:31......
NotImplemented o e e e e e e e e e
iter(obj, sentinel) L. e e e e e e e e e
Rotl3 sourceencoding oL e e e e e e
Negative *round()* L e
Reversing a string or a list (well, asequence) v i vt v i it

Python 2.x type system, metaclasses and more

General information L e e e e e
Built-in types o o e e e e e e e e e e e e e e e e e e e
Prerequisites for the subsequent sections Lo L e e e e
Object creation a.k.a. class instantiation Lo
Special case of object creation: class declaration a.k.a. metaclass instantiation
A more complex example of “class + metaclass + instantiation” hell
Another - even more complex - example of “class + metaclass + instantiation” hell
Furtherreading o e e e e e e

Useful services

Logs, monitoring, MEtriCS v v v v v v e
PaaS . .. e e e e

O O AN A B~ WW

11

13
13
13
14
14
14

15
15
15
15
15
15
16

6.3
6.4
6.5
6.6

Usability/browser teSting o v v v i e e e e e e e e e e e e e e e e e e
Misc APIS L e

Miscellaneous tips&tricks

7.1
7.2
1.3

Postfix e e e e e e

it . e e e
Virtualbox (+ Ubuntu) e e e e

8 Online books

9 Indices and tables

23
23
23
23

25

27

My notes, Release 0.2

This is a compilation of things that I stumbled upon or learned during my work. I decided to make it public to give
something back to the Open Source community which equipped me with most of the tools I use (Linux, Python,
Django, etc.).

Contents:

CONTENTS 1

http://pyconsultant.eu

My notes, Release 0.2

2 CONTENTS

CHAPTER
ONE

DJANGO 1.3, 1.4 TIPS&TRICKS

1.1 settings.py

* Either have a global, versioned settings.py file which imports a local (non-versioned) configuration:

import settings_local

which has a versioned template settings_local.py.template, or use the reverse approach - have a common settings
file, e.g. common_settings.py and then a non-versioned settings.py which imports the common stuff. The latter
seems to be the preferred way.

* Figure out project root using either:

PROJECT_ROOT = os.path.dirname (os.path.realpath(__file_))

or:

PROJECT_ROOT = os.path.realpath(os.path.dirname(__file__))

both forms seems to be actively used and they are pretty much equivalent.

* To get full file paths, use:
os.path.join (PROJECT_ROOT, ’'dirl’, 'myfile.txt’)

* You probably always want to have the detailed information about errors in templates. This is independent of the
DEBUG setting:

TEMPLATE_DEBUG = True

* You may want to use HttpOnly cookies:

SESSION_COOKIE_PATH = ’/; HttpOnly’
SESSION_COOKIE_HTTPONLY = True

Changed in version Django: 1.4 SESSION_COOKIE_HTTPONLY is True by default in Django 1.4+
* For multilingual sites use:

USE_I18N = True

You might also want:

USE_L10N = True

Language definitions:

http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html
http://stackoverflow.com/questions/3529695/how-do-i-set-httponly-cookie-in-django

My notes, Release 0.2

1.2

1.3

gettext = lambda s: s
LANGUAGES = (
("sv’, gettext (’Swedish’)),
("en’, gettext (’English’)),
)

If you use a global (per-project) template folder you need:

TEMPLATE_DIRS = (os.path.join (PROJECT_ROOT, ’'templates’),)

(De facto) standard add-ons

South migrations - you might want to use the following settings:

SKIP_SOUTH_TESTS = True,
SOUTH_TESTS_MIGRATE = False

(SKIP_SOUTH_TESTS, SOUTH_TESTS_MIGRATE)
Django Debug Toolbar - make sure to configure it according to the docs

Django Sentry - the preferred way to catch exceptions and log messages. It has been split into Sentry and Raven
so now both are needed. Note that because Sentry/Raven are meant to replace Django’s default mechanism and
also to integrate deeply into the framework, some attention is needed during configuration. Also note that there
were (still are?) unsolved problems like this one. But still, Sentry/Raven is probably one of the best such tools
out there.

MySQL 5.x

Create the database using the following command:

CREATE DATABASE CHARACTER SET UTFS8;

To convert an existing table with different encoding, use:

ALTER TABLE tab CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Note that CONVERT TO is critical to do the actual encoding conversion.

Make sure your tables use the InnoDB engine. You can make sure that it is so by adding this line to your
database configuration:

"OPTIONS’: {’init_command’: ’SET storage_engine=INNODB’, }

More. Note that MySQL 5.5 (and probably 5.1) have already set InnoDB as the default engine).

You can make the InnoDB engine the default one in my.cnf file (if you're on MySQL <= 5.0), and you don’t
even have to modify the global my.cnf but use a custom config file for your Django project.

In-memory database for tests, and also this. Rewritten in a cleaner way:

stop mysqgl

mount -t tmpfs -o size=400M tmpfs /tmp/ramdisk/
cp /var/lib/mysqgl /tmp/ramdisk/

mount —--bind /tmp/ramdisk/ /var/lib/mysqgl

start mysqgl

Chapter 1. Django 1.3, 1.4 tips&tricks

http://south.aeracode.org/
http://south.aeracode.org/docs/settings.html#skip-south-tests
http://south.aeracode.org/docs/settings.html#south-tests-migrate
http://pypi.python.org/pypi/django-debug-toolbar/0.8.4
http://pypi.python.org/pypi/django-debug-toolbar/0.8.4#installation
https://github.com/dcramer/django-sentry
https://github.com/dcramer/raven
http://raven.readthedocs.org/en/latest/config/django.html
https://github.com/dcramer/django-sentry/issues/210
https://docs.djangoproject.com/en/1.3/ref/databases/#creating-your-tables
https://docs.djangoproject.com/en/1.3/ref/databases/#connecting-to-the-database
http://tomislavsantek.iz.hr/2011/03/moving-mysql-databases-to-ramdisk-in-ubuntu-linux/
http://lists.mysql.com/mysql/147938

My notes, Release 0.2

* Speed tuning:

364739

Disable logging, slow-logging, binary log etc.

* Watch out for problems:

http://www.mysqlperformanceblog.com/2010/02/28/maximal-write-througput-in-mysql/
http://www.stereoplex.com/blog/speeding-up-django-unit-test-runs-with-mysql
http://www.stereoplex.com/blog/speeding-up-django-unit-test-runs-with-mysql
http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/
http://www.mysqglperformanceblog.com/2007/11/03/choosing-innodb_buffer_pool_size/
http://www.mysqglperformanceblog.com/2006/09/29/what-to-tune-in-mysql-server-after-installation/

http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/#comment-

— http://stackoverflow.com/questions/2235318/how-do-i-deal-with-this-race-condition-in-

django/2235624#2235624

every-five-seconds/2221400#2221400

QuerySet.get_or_create() is clumsy anyway

1.4 Forms

http://stackoverflow.com/questions/2221247/why-doesnt-this-loop-display-an-updated-object-count-

http://www.no-ack.org/2010/07/mysql-transactions-and-django.html

http://www.no-ack.org/2011/05/broken-transaction-management-in-mysql.html

Smart handling of forms in views (Credits go to PyDanny&Co). Instead of this:

def my_view (request) :
if request.method == "POST’:
form = MyForm(request.POST)
if form.is_valid():
form.hooray ()

return HttpResponseRedirect (’ /success/’)

else:
form = MyForm/()
return render_to_response ('my_template.html’,

do this:

def my_view (request) :
form = MyForm(request.POST or None)
if form.is_valid():
form.hooray ()
return HttpResponseRedirect (' /success/’)
return render_to_response ('my_template.html’,

{"form’” : form})

{’form’” : form})

The catch here is that form.is_valid () returns False for unbound forms.

1.4. Forms

http://www.mysqlperformanceblog.com/2010/02/28/maximal-write-througput-in-mysql/
http://www.stereoplex.com/blog/speeding-up-django-unit-test-runs-with-mysql
http://www.stereoplex.com/blog/speeding-up-django-unit-test-runs-with-mysql
http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/
http://www.mysqlperformanceblog.com/2007/11/03/choosing-innodb_buffer_pool_size/
http://www.mysqlperformanceblog.com/2006/09/29/what-to-tune-in-mysql-server-after-installation/
http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/#comment-364739
http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/#comment-364739
http://stackoverflow.com/questions/2235318/how-do-i-deal-with-this-race-condition-in-django/2235624#2235624
http://stackoverflow.com/questions/2235318/how-do-i-deal-with-this-race-condition-in-django/2235624#2235624
http://stackoverflow.com/questions/2221247/why-doesnt-this-loop-display-an-updated-object-count-every-five-seconds/2221400#2221400
http://stackoverflow.com/questions/2221247/why-doesnt-this-loop-display-an-updated-object-count-every-five-seconds/2221400#2221400
http://www.no-ack.org/2010/07/mysql-transactions-and-django.html
http://www.no-ack.org/2011/05/broken-transaction-management-in-mysql.html
https://github.com/django/django/blob/2591fb8d4c0246f68b79554976c012039df75359/django/db/models/query.py#L427
http://speakerdeck.com/u/pydanny/p/advanced-django-forms-usage

My notes, Release 0.2

1.5 Rarely-known (and/or undocumented) Django features

* When converting models.py into a Python package, make sure that models there have app_label set in their
Meta:

class Meta:
app_label = "app-name’

Without this trick Django won’t see the models.

e form.Form.has_changed() - checks if form data is different than the initial data

e django.utils.html.linebreaks(...) - converts newlines into \ <p\> and \<br\> tags

* django.utils.html.urlize(...) - safely converts URLSs into clickable links. This is a hard task otherwise:
1. http://stackoverflow.com/questions/37684/how-to-replace-plain-urls-with-links
2. http://www.codinghorror.com/blog/2008/10/the-problem-with-urls.html
3. http://www.ietf.org/rfc/rfc1738.txt
4. http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html

e model.Meta.order_with_respect_to - adds an additional field to the model, purely for ordering purposes. The
code behind this feature:

1. https://github.com/django/django/blob/1.3.2/django/db/models/base.py#1.227

2. https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L.532

3. https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L.603

4. https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L.860

5. https://github.com/django/django/blob/1.3.2/django/db/models/options.py#L.114
6. https://github.com/django/django/blob/1.3.2/django/db/models/fields/proxy.py

¢ Check the difference between Model.objects.filter (a_ _x=1, a__y=2) and
Model.objects.filter(a_ _x=1) .filter(a__y=2)

e A neat trick with aggregation and filtering - if . filter () precedes .annotate () then the annotation is
applied only to the filtered elements.

1.6 REST, HTTP and Django

1.6.1 URLSs, application structure

* A good practice is to design your URL structure so that it more or less follows the de facto standard convention.
Note that this is mostly about “ordnung”, not about being RESTful. It’s very hard, if not impossible, to write a
RESTAul service - and if you violate any of the REST principles, you’re not RESTful anymore. So just accept
that and follow whatever is reasonable.

* Still not convinced that REST is not what it appears to be (i.e. a way of naming URLs)? Check these resources
(in random order): S.O. thread #1, Roy Fielding’s article, S.O. thread #2, Example of RESTful web service
design.

* Specifically, Django sessions are not RESTful so to speak (check these: [1], [2], [3]). But they are great
otherwise, so why not use them? Web development is not a purity contest!

6 Chapter 1. Django 1.3, 1.4 tips&tricks

https://github.com/django/django/blob/1.3.2/django/forms/forms.py#L316
https://github.com/django/django/blob/1.3.2/django/utils/html.py#L71
https://github.com/django/django/blob/1.3.2/django/utils/html.py#L102
http://stackoverflow.com/questions/37684/how-to-replace-plain-urls-with-links
http://www.codinghorror.com/blog/2008/10/the-problem-with-urls.html
http://www.ietf.org/rfc/rfc1738.txt
http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html
https://docs.djangoproject.com/en/1.3/ref/models/options/#order-with-respect-to
https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L227
https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L532
https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L603
https://github.com/django/django/blob/1.3.2/django/db/models/base.py#L860
https://github.com/django/django/blob/1.3.2/django/db/models/options.py#L114
https://github.com/django/django/blob/1.3.2/django/db/models/fields/proxy.py
https://docs.djangoproject.com/en/1.3/topics/db/queries/#spanning-multi-valued-relationships
https://docs.djangoproject.com/en/1.3/topics/db/aggregation/#order-of-annotate-and-filter-clauses
http://en.wikipedia.org/wiki/Representational_State_Transfer#RESTful_web_services
http://stackoverflow.com/questions/973796/what-are-the-best-uses-of-rest-services
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication
http://www.peej.co.uk/articles/restfully-delicious.html
http://www.peej.co.uk/articles/restfully-delicious.html
http://www.peej.co.uk/articles/no-sessions.html
http://tech.groups.yahoo.com/group/rest-discuss/message/3583
http://davidvancouvering.blogspot.com/2007/09/session-state-is-evil.html

My notes, Release 0.2

« Still, adopting parts of the REST philosophy is a good idea. Some readings: [1], [2], [3], [4].

let’s imagine that we want to add books to a catalog. To create a new book resource you POST data to /books/
collection. If there is any error, you can get one of the HTTP error codes. If the new book resource is created,
you get #201 response.

Now, that’s not how it works in Django (or any other web framework)! In Django, if there is any form validation
error, a normal (i.e. #200) response is returned, just with some additional HTML markup for presenting errors
to the user. And even if the new book resource is created, a #302 redirect is returned. Moreover, you POST to
the very same URL which you get the form from - and not to the /books/ collection!

Why do we have here such a big deviation from how it should look like in a RESTful case?

The answer is simple - the HTML form is kind of a separate application, a user interface to the server-side
service - in the old days it would just be a standalone program. It’s simply a coincidence (or signum temporis)
that now it’s a part of the same web application.

The moment we abandon the POST-REDIRECT-GET paradigm, and start POSTing forms to the backend using
AJAX requests, we have a much cleaner separation of the user interface part and the underlying RESTful (or
pseudo-RESTHful) service. Only that the application is hooked to an URL in the same URL space..

So what to do about that? Just treat forms as non-RESTful parts, separate applications that happen to live in the
same house. Use a consistent URL naming for them, like /books/1/edit, and don’t think about them more.

* Some back up for what I’ve written above: [1], [2], [3], [4], [5].

* Some more reading about “RESTful” URLs: [1], [2].

e Which HTTP error codes to use? Here’s the answer. Ok ok, I know :-)
* But seriously, there are some rules that are worth following.

* HttpResponseBadRequest [400] seems to be a good choice when Django view is reached but request
parameters are invalid. Here are some good discussions on that.

* HttpResponseForbidden [403] seems like a good choice to indicate that authentication is needed in a
situation when redirection to the login page doesn’t make sense - e.g. for AJAX requests. Note that there is also
401 code, but it is meant to be used for the purposes of HTTP authentication, and not a custom one. (A nice
discussion)

1.6.2 Django and HTTP caching for static assets

¢ Introduction to HTTP caching

» Use an asset manager. There is one shipped with Django 1.3+ (django.contrib.staticfiles) but it’s not too powerful
— Pick your favourite one from django-pluggables
— A pretty great one is (was?) django-mediagenerator (Hopefully someone will maintain it)
— Your picked assed manager should be able to:

% Combine & minimize CSS and JS scripts, preferably using YUI Compressor and/or Google Closure
Compiler

* Version the assets, i.e. give them unique names like sitescripts.lfhdysjnry46. Js - thisis
required to efficiently cache them

x Now, you want your web server to serve the assets with one of these headers:

1.6. REST, HTTP and Django 7

http://stackoverflow.com/questions/6433480/restful-actions-services-that-dont-correspond-to-an-entity
http://stackoverflow.com/questions/3408191/is-the-twitter-api-really-restful
http://stackoverflow.com/questions/969585/rest-url-design-multiple-resources-in-one-http-call
http://stackoverflow.com/questions/2173721/why-does-including-an-action-verb-in-the-uri-in-a-rest-implementation-violate-th
http://stackoverflow.com/questions/7259464/how-should-a-resource-edit-path-looks-like-on-a-restful-web-app
http://stackoverflow.com/questions/1711653/three-step-buyonline-the-restful-way
http://stackoverflow.com/questions/3432660/how-to-edit-a-resource
http://stackoverflow.com/questions/1657454/how-to-do-a-restful-request-for-an-edit-form
http://stackoverflow.com/questions/1269816/html-interface-to-restful-web-service-without-javascript
http://stackoverflow.com/questions/1827293/restful-urls-for-a-search-service-with-an-arbitrary-number-of-filtering-criteria
http://stackoverflow.com/questions/7272472/how-to-specify-a-range-of-data-or-multiple-entities-in-a-restful-web-service
http://www.aisee.com/graph_of_the_month/http.png
http://stackoverflow.com/questions/5077871/what-is-the-proper-http-response-code-for-request-without-mandatory-fields
http://stackoverflow.com/questions/4781187/http-400-bad-request-for-logical-error-not-malformed-request-syntax
http://stackoverflow.com/questions/1364527/http-status-code-for-bad-data
http://en.wikipedia.org/wiki/Basic_access_authentication
http://stackoverflow.com/questions/6113014/what-http-code-to-use-in-not-authenticated-and-not-authorized-cases
http://stackoverflow.com/questions/6113014/what-http-code-to-use-in-not-authenticated-and-not-authorized-cases
http://www.mnot.net/cache_docs/
https://docs.djangoproject.com/en/1.3/howto/static-files/
http://djangopackages.com/grids/g/asset-managers/
http://www.allbuttonspressed.com/projects/django-mediagenerator
http://www.allbuttonspressed.com/goodbye#comment-372779409
http://developer.yahoo.com/yui/compressor/
http://code.google.com/intl/pl-PL/closure/compiler/
http://code.google.com/intl/pl-PL/closure/compiler/

My notes, Release 0.2

Expires: (now + 1 year)
Cache-Control: public, max-age=31536000

plus this one:

Last-Modified: {{ date }}

* Thanks to the above headers, the browser caches the assets for up to one year - and in case it wants to
check if an asset has changed, it sends a conditional request (using If-Modified-Since header)
that makes it possible for the web server to reply with 304 Not Modified status code.

* Perfect caching headers
* Even more, from Yahoo
In Apache one need to add something like this to the virtual host definition (after making sure that the

relevant modules are loaded):

<Directory /my/project/dir/_generated_media>
ExpiresActive On
ExpiresDefault "access plus 1 year"
Header merge Cache-Control "public"
Header unset Etag
FileETag None

</Directory>

« That’s basically all - for static assets there is no need to worry about things like proxy caches storing
sensitive data etc.

% Ah, one more thing - you probably want to have Keep-Alive on for static assets, but it’s not that
good for your Django application. So better think about some nginx. Useful link

Btw do not get frustrated if the caching doesn’t work when you refresh the page using F5. That’s a
known issue.

1.6.3 HTTP caching for Django views

» There’s probably no single setup suitable for all your views (pages)
* So let me just give you a few links:

— Caching in IE9 Take a look at Vary-related issues, HTTPS caching, redirect caching etc.. It’s not trivial to
set it all up properly.

— Controlling HTTP caching from Django
— django.utils.cache module

* Because of all these things to consider, if you don’t have enough manpower to handle it properly, I think that
it’s not that unreasonable to just disable HTTP caching using something like this (idea borrowed from Google

Docs):
response [’ Cache-Control’] = ’'no-cache, no-store, max—-age=0, must-revalidate’
response|[’Expires’] = 'Fri, 01 Jan 2010 00:00:00 GMT’

* Otherwise you would have to make sure that there’s no leak of sensitive data, no old content is presented to users
etc. (Btw using must-revalidate causes the back button in the browser to refresh (reload) the page when
pressed.)

8 Chapter 1. Django 1.3, 1.4 tips&tricks

http://www.allbuttonspressed.com/projects/django-mediagenerator#q-what-are-the-perfect-caching-headers
http://developer.yahoo.com/performance/rules.html#expires
http://serverfault.com/questions/73812/should-i-activate-keepalive-in-apache2
http://stackoverflow.com/questions/3934413/chrome-why-is-it-sending-if-modified-since-requests/3934694#3934694
http://stackoverflow.com/questions/3934413/chrome-why-is-it-sending-if-modified-since-requests/3934694#3934694
http://blogs.msdn.com/b/ie/archive/2010/07/14/caching-improvements-in-internet-explorer-9.aspx
https://docs.djangoproject.com/en/1.3/topics/cache/#upstream-caches
https://docs.djangoproject.com/en/1.3/ref/utils/#module-django.utils.cache

My notes, Release 0.2

1.6.4 Useful links

HTTP 1.1 - RFC 2616

Cache-Control summary

1.6.5 Other HTTP performance tips

1.8

Read Yahoo guidelines
Read Google guidelines

Use YSlow, PageSpeed or even “Audits” tool from Chrome inspector to learn what are the bottlenecks of your
site

There are also other online: Pingdom, Redbot
One thing that I think is interesting: optimize the order of stylesheets and scripts

Remember, performance is a feature!

Non-HTTP caching and Django

Learn to use the cache framework
Employ template source caching - look for django.template.loaders.cached.Loader
Consider using two-phased template rendering

Try Redis <http://redis.io/, it’s more powerful than ‘Memcached and not slower. Even if you’re not impressed
by its command set it has one major advantage over Memcached...

...which is the persistent storage. It’s great not only because of being persistent, but also because it allows to
decrease the chances of learning dog piling aka thundering herd problem in practice. If you can dump your
cached data and reload it later, then server crashes or restarts don’t hurt that much.

A nice Redis tutorial

Btw, the thundering herd problem is related also to the normal usage of the cache - check django-newcache’s
README.

Avoid Apache :)

Apache is a mature and stable piece of software...

...but it’s also a complex one. It’s not that hard to leave a security hole or misconfigure it:
— MPM vs Prefork
— mod_wsgi embedded vs daemon mode

— Are you sure /etc/passwd is not exposed? I’'m never sure :) Apache “thinks” in terms of files and folders
so there might be a way (i.e. URL) to access sensitive data.

— http://stackoverflow.com/questions/6248772/should-django-python-apps-be-stored-in-the-web-server-
document-root/6249943#6249943

— http://stackoverflow.com/questions/5021424/mod-wsgi-daemon-mode-wsgiapplicationgroup-and-python-
interpreter-separation

1.7. Non-HTTP caching and Django 9

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://palisade.plynt.com/issues/2008Jul/cache-control-attributes/
http://developer.yahoo.com/performance/
http://code.google.com/intl/pl-PL/speed/articles/
http://developer.yahoo.com/yslow/
http://code.google.com/intl/pl-PL/speed/page-speed/
http://tools.pingdom.com/fpt/
http://redbot.org/
http://code.google.com/intl/pl-PL/speed/page-speed/docs/rtt.html#PutStylesBeforeScripts
http://www.codinghorror.com/blog/2011/06/performance-is-a-feature.html
https://docs.djangoproject.com/en/1.3/topics/cache/
https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types
http://www.holovaty.com/writing/django-two-phased-rendering/
http://memcached.org/
http://redis.io/commands
http://highscalability.com/strategy-break-memcache-dog-pile
http://books.google.pl/books?id=m-bDb87UWL0C&pg=PA357&lpg=PA357&dq=thundering+herd+memcache&source=bl&ots=VURP6rGOpI&sig=oa-uHNZpj5IATTg_P_eF7852iWY&hl=pl&ei=6lqwTvX-E9T54QT73dicAQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0CD0Q6AEwAw#v=onepage&q=thundering%20herd%20memcache&f=false
http://simonwillison.net/static/2010/redis-tutorial/
https://github.com/ericflo/django-newcache/blob/master/README.txt#L79
https://github.com/ericflo/django-newcache/blob/master/README.txt#L79
http://stackoverflow.com/questions/6248772/should-django-python-apps-be-stored-in-the-web-server-document-root/6249943#6249943
http://stackoverflow.com/questions/6248772/should-django-python-apps-be-stored-in-the-web-server-document-root/6249943#6249943
http://stackoverflow.com/questions/5021424/mod-wsgi-daemon-mode-wsgiapplicationgroup-and-python-interpreter-separation
http://stackoverflow.com/questions/5021424/mod-wsgi-daemon-mode-wsgiapplicationgroup-and-python-interpreter-separation

My notes, Release 0.2

* nginx is simpler and is the preferred server for static assets anyway.

* Btw use KeepAlive=0 for wsgi apps (to not run out of connections) vs KeepAlive=1 for static assets (to
speed up serving them)

10 Chapter 1. Django 1.3, 1.4 tips&tricks

CHAPTER
TWO

DJANGO 1.4 GOTCHAS

» Password hasing makes unit tests very slow. The solution is to switch back to MDS5 hashing during when running
tests:

if sys.argv[l] == ’"test’:
PASSWORD_HASHERS = (’django.contrib.auth.hashers.MD5PasswordHasher’,)

11

http://www.reddit.com/r/django/comments/seq59/are_other_people_experiencing_test_slowdown_in_14/

My notes, Release 0.2

12 Chapter 2. Django 1.4 gotchas

CHAPTER
THREE

BROWSERS, HTML5 & JAVASCRIPT

3.1 The hashbang hell

* http://danwebb.net/2011/5/28/it-is-about-the-hashbangs
* http://isolani.co.uk/blog/javascript/BreakingThe WebWithHashBangs

* http://webmasters.stackexchange.com/questions/32472/pros-cons-of-hash-navigation-from-seo-perspective

3.2 HTML5

I’ve spent some time looking for the best explanations of different aspects of HTMLS. Here are my findings.

3.2.1 General

* http://mathiasbynens.be/notes/html5-levels

* http://html5doctor.com/avoiding-common-html5-mistakes/

3.2.2 Outlining

* New document outlines - sectioning flowchart (source)

* http://html5doctor.com/the-section-element/

* http://html5doctor.com/the-article-element/

* Sections and outline

* When to use sections

* http://stackoverflow.com/questions/8734350/html5-structure-article-section-and-div-usage

* http://stackoverflow.com/questions/6947489/html5-appropriate-use-of-article-tag

3.2.3 Headings

* In general it seems that <header> tag is optional it’s only meant to wrap a single <h1> tag. <hl> tag sort of
implies <header> around it.

* http://html5doctor.com/the-header-element/ - http://html5doctor.com/the-header-element/#comment-5769

13

http://danwebb.net/2011/5/28/it-is-about-the-hashbangs
http://isolani.co.uk/blog/javascript/BreakingTheWebWithHashBangs
http://webmasters.stackexchange.com/questions/32472/pros-cons-of-hash-navigation-from-seo-perspective
http://mathiasbynens.be/notes/html5-levels
http://html5doctor.com/avoiding-common-html5-mistakes/
http://html5doctor.com/outlines/
http://html5doctor.com/downloads/h5d-sectioning-flowchart.png
http://html5doctor.com/happy-1st-birthday-us/
http://html5doctor.com/the-section-element/
http://html5doctor.com/the-article-element/
https://developer.mozilla.org/en-US/docs/Sections_and_Outlines_of_an_HTML5_document
http://www.impressivewebs.com/html5-section/
http://stackoverflow.com/questions/8734350/html5-structure-article-section-and-div-usage
http://stackoverflow.com/questions/6947489/html5-appropriate-use-of-article-tag
http://html5doctor.com/the-header-element/
http://html5doctor.com/the-header-element/#comment-5769

My notes, Release 0.2

* http://stackoverflow.com/questions/7712871/difference-between-heading-inside-section-or-before-it-in-html5

* http://stackoverflow.com/questions/7796367/why-does-the-htmlS-header-element-require-a-h-tag

* http://stackoverflow.com/questions/4837269/html5-using-header-or-footer-tag-twice

* http://stackoverflow.com/questions/9663559/html5-section-headings

* http://www.w3.org/TR/html5/the-header-element.html#the-header-element

* http://www.w3.org/TR/html5/the-h1-h2-h3-h4-h5-and-h6-elements.html#the-h1-h2-h3-h4-h5-and-h6-elements
* http://www.w3.org/TR/html5/the-hgroup-element.html#the-hgroup-element

* http://www.w3.org/TR/html5/content-models.html#heading-content-0 (note no <header> tag!)

* http://www.w3.org/TR/html5/headings-and-sections.html#headings-and-sections

3.3 Browsers’ bfcache

* Firefox has so called bfcache (“Back-Forward Cache”) that keeps the state of the whole page, including
JavaScript context, and restores it when user presses the Back button. This is separate from the in-browse
page (HTTP) cache which stores only the initial page data, as sent by the server. More on this here, here.

» Example of how bfcache works.
» Bfcache in Opera.

» Bfcache in WebKit I.

* Bfcache in WebKit II.

3.4 jQuery Mobile

* https://github.com/jquery/jquery-mobile/issues/157 1#issuecomment-1602190

3.5 JavaScript

« JS has some evil parts, use CoffeeScript (also protects from RSI ;))

14 Chapter 3. Browsers, HTML5 & JavaScript

http://stackoverflow.com/questions/7712871/difference-between-heading-inside-section-or-before-it-in-html5
http://stackoverflow.com/questions/7796367/why-does-the-html5-header-element-require-a-h-tag
http://stackoverflow.com/questions/4837269/html5-using-header-or-footer-tag-twice
http://stackoverflow.com/questions/9663559/html5-section-headings
http://www.w3.org/TR/html5/the-header-element.html#the-header-element
http://www.w3.org/TR/html5/the-h1-h2-h3-h4-h5-and-h6-elements.html#the-h1-h2-h3-h4-h5-and-h6-elements
http://www.w3.org/TR/html5/the-hgroup-element.html#the-hgroup-element
http://www.w3.org/TR/html5/content-models.html#heading-content-0
http://www.w3.org/TR/html5/headings-and-sections.html#headings-and-sections
https://developer.mozilla.org/en-US/docs/Using_Firefox_1.5_caching
http://stackoverflow.com/questions/1195440/ajax-back-button-and-dom-updates
http://code.google.com/p/chromium/issues/detail?id=2879
http://www.twmagic.com/misc/cache.html
http://www.opera.com/support/kb/view/827/
http://www.webkit.org/blog/427/webkit-page-cache-i-the-basics/
http://www.webkit.org/blog/516/webkit-page-cache-ii-the-unload-event/
https://github.com/jquery/jquery-mobile/issues/1571#issuecomment-1602190
http://wtfjs.com/
http://coffeescript.org/

CHAPTER
FOUR

PYTHON 2.X RARITIES

4.1 Slicing, extended slicing, Ellipsis - a[i:]j:step], al[i:j,
k:1], al[..., i:3]

More: [1], [2], [3].

>>> class C(object):
. def _ _getitem__ (self, sli):
. print sli

>>> ¢ = C()
>>> c[2, 1:3, 1:4:6, ..., 4:, :6, :, ::-1]
(

(2, slice(l, 3, None), slice(l, 4, 6), Ellipsis, slice(4, None, None), slice(None, 6, None), slice (N

4.2 Notimplemented

Special value which can be returned by the “rich comparison” special methods (__eq__(), __lt__ (), and friends), to
indicate that the comparison is not implemented with respect to the other type..

NotImplemented and reflected operands.

4.3 iter(obj, sentinel)

The iter(callable, until_value) function repeatedly calls callable and yields its result until until_value is returned.

Example: for line in iter(f.read(), ’'\n’):

4.4 Rot13 source encoding

http://stackoverflow.com/questions/101268/hidden-features-of-python/1024693#1024693

4.5 Negative *round()*

Negative precision affects digits in front of the decimal point:

15

http://docs.python.org/release/2.7/library/functions.html#slice
http://stackoverflow.com/questions/118370/how-do-you-use-the-ellipsis-slicing-syntax-in-python
http://stackoverflow.com/questions/772124/what-does-the-python-ellipsis-object-do
http://docs.python.org/release/2.7/library/constants.html#NotImplemented
http://docs.python.org/release/2.7/library/constants.html#NotImplemented
http://stackoverflow.com/questions/101268/hidden-features-of-python/3693838#3693838
http://stackoverflow.com/questions/101268/hidden-features-of-python/102202#102202
http://stackoverflow.com/questions/101268/hidden-features-of-python/1024693#1024693

My notes, Release 0.2

>>> str(round(1234.5678, -2))
71200.0"
>>> str(round(1234.5678, 2))
r1234.57"

4.6 Reversing a string or a list (well, a sequence)

It’s is as simple as making a copy of it with negative increment: sequence[::-1] - which is equivalent to
sequence [-1::-1] (see: Extended slices).

16 Chapter 4. Python 2.x rarities

http://docs.python.org/release/2.3.5/whatsnew/section-slices.html

CHAPTER
FIVE

PYTHON 2. X TYPE SYSTEM,
METACLASSES AND MORE

5.1 General information

Basic fact: EVERYTHING IS AN OBJECT
Object is an instance of a class, which is called its type: type (x) is x.__class__ /always True/
Each&every class object inherits directly or indirectly from root base class object

Thus each&every object (i.e. class instance) is a direct or indirect instance of object class:
isinstance (x, object) is True /always/

Classes are also objects, therefore they also are instances of (other) classes (called metaclasses) [My own idea:
objects can be mentally split into () “plain” objects and (¥) class objects (kind of plain objects with additional
class stuff attached to them)]*

Because every object, including class object, has its class x.___class__, and that class has its own class
x.__class__._ _class__,the chain would be infinite. As a solution, there is a class named t ype which
is its own type, i.e. type.__class__ is type - that type class works as type of types (sth like “the
ultimate type”)

5.2 Built-in types

For most built-in types the following relationships occur:

type(l) is int; int._ _bases__ == (object,); type(int) is type; int.__class__ is type

type(1.0) is float; float._ _bases__ == (object,); type(float) is type; float.__class__ is type
type(Ellipsis) is ellipsis; ellipsis._ _bases__ == (object,); type(ellipsis) is type; # note that ‘el
type (lambda:1) is function; function.__bases__ == (object,); type(function) is type; # same as with
As for strings, it’s the same after taking into account one minor detail:

type ("text’) is str; str._ _bases__ == (basestring,); basestring.__bases__ == (object,); type(str) is
str.__class__ is type; basestring.__class__ is type;

type(u’text’) is unicode; unicode.__bases__ == (basestring,); type(unicode) is type

There is one edge case on the top of class hierarchy: t ype inherits from ob ject (which is the root base class for all

other classes; doesn’t inherit from anything else), while object is instance of type:

17

My notes, Release 0.2

object._ _bases__ == () object is a root base class
type.__bases__ == (object,) object is a root base class, so type has to inherit from it
object.__class__ is type object is an instance of the type of all types, i.e. type

type.__class__ is type
isinstance (type, object) is True
isinstance (object, type) is True

type is a type of itself
type class object is an instance of object class
object class object is an instance of type which is a descendant

5.3 Prerequisites for the subsequent sections

“For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if
defined on an object’s type, not in the object’s instance dictionary.” In other words, C () resolves to
C.__class__.__call__(C) andnotto C.__call__ (). The latter __call__ method is injected into the
created C instance.

>>> type.__call__ (int)
0
>>> type.__call__ (int, 1)

>>> int._ new__ (int)

>>> int._ new__ (int, 1)

5.4 Object creation a.k.a. class instantiation

To create an object of class Coneuse: ¢ = C(...).

C(...) isasyntatic sugar forC.__class__.__call__ (...),??? which is a method call on class object C, a
method which is taken from class of C class (unless called explicitely as c.___call__ () ???, more on this here) i.e.
C.__class__,i.e. metaclass, i.e. often the built-in t ype class (uff!):

def _ call_(self, «kargs, +**kwargs):
obj = self.__new__ (self, xkargs, =*xkwargs)
obj.__init__ (xkargs, =xxkwargs)
return obj

self.__new__ () isa static method meant to create an instance of a class passed to it as a first parameter. It’s often

taken from ob ject base class, but can be overriden in given class, to customize the creation of class instances. More
on__new__ () is here and here.

Subsequently, self.__init__ () takes the class instance object and initializes it.

5.5 Special case of object creation: class declaration a.k.a. meta-
class instantiation

The following declaration:

class C(object) :
a =1

18 Chapter 5. Python 2.x type system, metaclasses and more

http://docs.python.org/release/2.7/reference/datamodel.html#special-method-lookup-for-new-style-classes
http://docs.python.org/release/2.7/reference/datamodel.html#special-method-lookup-for-new-style-classes
http://docs.python.org/release/2.7/reference/datamodel.html#special-method-lookup-for-new-style-classes
http://www.python.org/download/releases/2.2.3/descrintro/#__new__
http://docs.python.org/release/2.7/reference/datamodel.html#object.__new__

My notes, Release 0.2

is nothing more than just a syntatic sugar for: C = C.__metaclass__('C’, (object,), {’a’: 1})
where __metaclass___ is determined according to this. and very often it resolves to the built-in type class,
therefore the above can often be rewritten as: C = type ('C’, (object,), {'a’: 1}).

type('C’, (object,), {’a’: 1}) is a syntatic sugar for type.__class__.__call__ ('C’,

(object,), {’a’: 1}) (which can be simplified to type._ _call__ ('C’, (object,), {'a’:
1}) because type.___class__ is type is always true) and this is resolved like a standard object creation
described in the previous section.

5.6 A more complex example of “class + metaclass + instantiation”
hell

This:
class MetaC(type) :
def _ new__ (cls, xkargs, =*=xkwargs): # static method, called by type.__call__ () to create MetaC
print ’'MetaC.__new__:’, cls, kargs, kwargs
return type._ _new__ (cls, xkargs, xxkwargs) # this is xmost probably* inherited from ‘object
def _ init_ (self, xkargs, =*xkwargs): # instance method, called to initialize MetaC instance,
print ’'MetaC()._ init__ :’, self, kargs, kwargs
class C(object) : # equivalent to: C = MetaC(’C’, (object,), {’/__metaclass__’: MetaC})
_ metaclass__ = MetaC

gives in the interactive shell:

MetaC.__new__: <class ’'__main__ .MetaC’> ('C’, (<type ’'object’>,), {’'_module_ ': ’'__main__ ', '__meta

MetaC() .__init__: <class ’'__main__.C’'> ('C’', (<type ’'object’>,), {’_module_ ’': ’'_main__ ', ’'__metac:

5.7 Another - even more complex - example of “class + metaclass +
instantiation” hell

This:
class MetaC(type): # equivalent to: MetaC = MetaC(’MetaC’, (type,), {’/__metaclass__’: MetaC})
_ _metaclass___ = MetaC # MetaC is own metaclass!
def _ _call__(cls, xkargs, =*=*kwargs):
print ’'MetaC._ call :’, cls, kargs, kwargs
return type.__call__ (cls, =xkargs, xxkwargs)
def _ new__ (cls, *kargs, **kwargs): # this is #most probably* inherited from ‘object ' class
print 'MetaC.__new__:’, cls, kargs, kwargs
return type.__new__ (cls, xkargs, *xkwargs)
def _ _init__ (self, xkargs, =*xkwargs):

print ’'MetaC().__init__ :’, self, kargs, kwargs

gives in the interactive shell:

5.6. A more complex example of “class + metaclass + instantiation” hell 19

http://www.python.org/download/releases/2.2.3/descrintro/#metaclasses

My notes, Release 0.2

MetaC.__call_ : <class ’'__main__.MetaC’> (’MetaC’, (<type ’'type’>,), {’__call__’': <function __call___
MetaC.__new__: <class ’__main__ .MetaC’> (’'MetaC’, (<type ’'type’>,), {’__call_': <function __call__
MetaC().__init___: <class ’'__main__ .MetaC’> (’MetaC’, (<type ’type’>,), {’_call__': <function __call.

5.8 Further reading

* http://python.org/doc/newstyle/

* http://docs.python.org/reference/datamodel.html, especially http://docs.python.org/reference/datamodel.html#customizing-
class-creation

* http://stackoverflow.com/questions/395982/metaclass-new-cls-and-super-can-someone-explain-the-
mechanism-exa/396109

* http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python, http://stackoverflow.com/questions/100003/what-
is-a-metaclass-in-python/6581949#6581949

* http://stackoverflow.com/questions/3798835/understanding-get-and-set-and-python-descriptors
* http://docs.python.org/reference/datamodel. html#implementing-descriptors

* http://docs.python.org/howto/descriptor.html#invoking-descriptors

* http://docs.python.org/reference/datamodel.html#special-method-lookup-for-new-style-classes
* http://docs.python.org/reference/datamodel.html#more-attribute-access-for-new-style-classes
* https://groups.google.com/forum/#!topic/secrets-of-the-framework-creators/UTCMHguEhKs

* http://users.rcn.com/python/download/Descriptor.htm

* Python descriptors/descriptor protocol: http://users.rcn.com/python/download/Descriptor.htm,
http://docs.python.org/howto/descriptor.html, http://martyalchin.com/2007/nov/23/python-descriptors-part-
1-of-2/

e Descriptors vs bound/unbound methods: http://stackoverflow.com/questions/1015307/python-bind-an-
unbound-method, http://stackoverflow.com/questions/114214/class-method-differences-in-python-bound-
unbound-and-static/114289#114289, http://stackoverflow.com/questions/114214/class-method-differences-in-
python-bound-unbound-and-static/114289#114289

20 Chapter 5. Python 2.x type system, metaclasses and more

http://python.org/doc/newstyle/
http://docs.python.org/reference/datamodel.html
http://docs.python.org/reference/datamodel.html#customizing-class-creation
http://docs.python.org/reference/datamodel.html#customizing-class-creation
http://stackoverflow.com/questions/395982/metaclass-new-cls-and-super-can-someone-explain-the-mechanism-exa/396109
http://stackoverflow.com/questions/395982/metaclass-new-cls-and-super-can-someone-explain-the-mechanism-exa/396109
http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python
http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python/6581949#6581949
http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python/6581949#6581949
http://stackoverflow.com/questions/3798835/understanding-get-and-set-and-python-descriptors
http://docs.python.org/reference/datamodel.html#implementing-descriptors
http://docs.python.org/howto/descriptor.html#invoking-descriptors
http://docs.python.org/reference/datamodel.html#special-method-lookup-for-new-style-classes
http://docs.python.org/reference/datamodel.html#more-attribute-access-for-new-style-classes
https://groups.google.com/forum/#!topic/secrets-of-the-framework-creators/UTCMHguEhKs
http://users.rcn.com/python/download/Descriptor.htm
http://users.rcn.com/python/download/Descriptor.htm
http://docs.python.org/howto/descriptor.html
http://martyalchin.com/2007/nov/23/python-descriptors-part-1-of-2/
http://martyalchin.com/2007/nov/23/python-descriptors-part-1-of-2/
http://stackoverflow.com/questions/1015307/python-bind-an-unbound-method
http://stackoverflow.com/questions/1015307/python-bind-an-unbound-method
http://stackoverflow.com/questions/114214/class-method-differences-in-python-bound-unbound-and-static/114289#114289
http://stackoverflow.com/questions/114214/class-method-differences-in-python-bound-unbound-and-static/114289#114289
http://stackoverflow.com/questions/114214/class-method-differences-in-python-bound-unbound-and-static/114289#114289
http://stackoverflow.com/questions/114214/class-method-differences-in-python-bound-unbound-and-static/114289#114289

CHAPTER
SIX

USEFUL SERVICES

6.1 Logs, monitoring, metrics

e http://newrelic.com/

* http://airbrake.io

* http://www.exceptional.io/
* http://graylog2.org/about

* https://www.metricfire.com/
* http://loggly.com/

* http://www.statsmix.com/

* https://www.getsentry.com
* https://scoutapp.com/

* https://papertrailapp.com/

6.2 PaaS

http://cloudfoundry.com/

* https://openshift.redhat.com

http://appfog.com

http://dotcloud.com

* http://www.activestate.com/stackato

6.3 Cl

* https://www.shiningpanda-ci.com/

21

http://newrelic.com/
http://airbrake.io
http://www.exceptional.io/
http://graylog2.org/about
https://www.metricfire.com/
http://loggly.com/
http://www.statsmix.com/
https://www.getsentry.com
https://scoutapp.com/
https://papertrailapp.com/
http://cloudfoundry.com/
https://openshift.redhat.com
http://appfog.com
http://dotcloud.com
http://www.activestate.com/stackato
https://www.shiningpanda-ci.com/

My notes, Release 0.2

6.4 Usability/browser testing

* http://www.feedbackarmy.com/

* http://www.browserstack.com/

6.5 Misc APIs

* http://www.fullcontact.com/

http://pusher.com/

http://chart.io/

* http://www.elasticsearch.org/

6.6 Private cloud storage

* https://owncloud.com/

22 Chapter 6. Useful services

http://www.feedbackarmy.com/
http://www.browserstack.com/
http://www.fullcontact.com/
http://pusher.com/
http://chart.io/
http://www.elasticsearch.org/
https://owncloud.com/

CHAPTER
SEVEN

MISCELLANEOUS TIPS&TRICKS

7.1 Postfix

» After updating /etc/aliases, in order for Postfix to see the updated aliases, newaliases command has
to be issued in bash

* Set up a Gmail relay:

— http://serverfault.com/questions/119278/configure-postfix-to-send-relay-emails-gmail-smtp-gmail-com-
via-port-587

— http://productforums.google.com/forum/#!category-topic/gmail/composing-and-sending-
messages/7QWAQO_aunhc

— http://www.postfix.org/postconf.5.html#relay_transport
— http://www.postfix.org/TLS_README.html
— Postfix configuration is not that complex, there’s a lot of options but the docs are well-written

— http://www.howtoforge.com/forums/showthread.php?p=105989

7.2 git

¢ In the precommit hook one can add ack—-grep "pdb\.set_trace\ (\) " to find all remaining pdb calls.
You can also do much more there.

7.3 Virtualbox (+ Ubuntu)

* Port mapping in the NAT mode http://superuser.com/questions/424083/virtualbox-host-ssh-to-guest. Then: ssh
-p 2222 user@localhost.

* Animported Vbox image cannot connect to the network: https://forums.virtualbox.org/viewtopic.php?f=6&1t=24383.
One have to comment out entries in /etc/udev/rules.d/70-persistent-net.rules (in the guest
OS of course) as they contain MAC address of the formerly used virtual machine, and the restart the guest.

* Using host’s DNS resolver in the NAT mode: http://www.virtualbox.org/manual/ch09.html#nat_host_resolver_proxy.
That makes host’s /et c/hosts used for DNS lookups in the virtual machine.

¢ Watch out for DNS resolving in Ubuntu Precise (12.04+): http://www.stgraber.org/2012/02/24/dns-in-ubuntu-
12-04/, https://plus.google.com/105897381673403508112/posts/UNrkEtAwoMX.

23

http://serverfault.com/questions/119278/configure-postfix-to-send-relay-emails-gmail-smtp-gmail-com-via-port-587
http://serverfault.com/questions/119278/configure-postfix-to-send-relay-emails-gmail-smtp-gmail-com-via-port-587
http://productforums.google.com/forum/#!category-topic/gmail/composing-and-sending-messages/7QWAO_aunhc
http://productforums.google.com/forum/#!category-topic/gmail/composing-and-sending-messages/7QWAO_aunhc
http://www.postfix.org/postconf.5.html#relay_transport
http://www.postfix.org/TLS_README.html
http://www.howtoforge.com/forums/showthread.php?p=105989
http://tech.yipit.com/2011/11/16/183772396/
http://superuser.com/questions/424083/virtualbox-host-ssh-to-guest
https://forums.virtualbox.org/viewtopic.php?f=6&t=24383
http://www.virtualbox.org/manual/ch09.html#nat_host_resolver_proxy
http://www.stgraber.org/2012/02/24/dns-in-ubuntu-12-04/
http://www.stgraber.org/2012/02/24/dns-in-ubuntu-12-04/
https://plus.google.com/105897381673403508112/posts/UNrkEtAw6MX

My notes, Release 0.2

24

Chapter 7. Miscellaneous tips&tricks

CHAPTER
EIGHT

ONLINE BOOKS

e TCP/IP Guide

25

http://www.tcpipguide.com/free/t_toc.htm

My notes, Release 0.2

26

Chapter 8. Online books

CHAPTER
NINE

INDICES AND TABLES

27

	Django 1.3, 1.4 tips&tricks
	settings.py
	(De facto) standard add-ons
	MySQL 5.x
	Forms
	Rarely-known (and/or undocumented) Django features
	REST, HTTP and Django
	Non-HTTP caching and Django
	Avoid Apache :)

	Django 1.4 gotchas
	Browsers, HTML5 & JavaScript
	The hashbang hell
	HTML5
	Browsers' bfcache
	jQuery Mobile
	JavaScript

	Python 2.x rarities
	Slicing, extended slicing, Ellipsis - a[i:j:step], a[i:j, k:l], a[..., i:j]
	NotImplemented
	iter(obj, sentinel)
	Rot13 source encoding
	Negative *round()*
	Reversing a string or a list (well, a sequence)

	Python 2.x type system, metaclasses and more
	General information
	Built-in types
	Prerequisites for the subsequent sections
	Object creation a.k.a. class instantiation
	Special case of object creation: class declaration a.k.a. metaclass instantiation
	A more complex example of ``class + metaclass + instantiation'' hell
	Another - even more complex - example of ``class + metaclass + instantiation'' hell
	Further reading

	Useful services
	Logs, monitoring, metrics
	PaaS
	CI
	Usability/browser testing
	Misc APIs
	Private cloud storage

	Miscellaneous tips&tricks
	Postfix
	git
	Virtualbox (+ Ubuntu)

	Online books
	Indices and tables

